Publications

What is a Publication?
2 Publications visible to you, out of a total of 2

Abstract (Expand)

Glycerol, a major by-product of ethanol fermentation by Saccharomyces cerevisiae, is of significant importance to the wine, beer, and ethanol production industries. To gain a clearer understanding of and to quantify the extent to which parameters of the pathway affect glycerol flux in S. cerevisiae, a kinetic model of the glycerol synthesis pathway has been constructed. Kinetic parameters were collected from published values. Maximal enzyme activities and intracellular effector concentrations were determined experimentally. The model was validated by comparing experimental results on the rate of glycerol production to the rate calculated by the model. Values calculated by the model agreed well with those measured in independent experiments. The model also mimics the changes in the rate of glycerol synthesis at different phases of growth. Metabolic control analysis values calculated by the model indicate that the NAD(+)-dependent glycerol 3-phosphate dehydrogenase-catalyzed reaction has a flux control coefficient (C(J)v1) of approximately 0.85 and exercises the majority of the control of flux through the pathway. Response coefficients of parameter metabolites indicate that flux through the pathway is most responsive to dihydroxyacetone phosphate concentration (R(J)DHAP= 0.48 to 0.69), followed by ATP concentration (R(J)ATP = -0.21 to -0.50). Interestingly, the pathway responds weakly to NADH concentration (R(J)NADH = 0.03 to 0.08). The model indicates that the best strategy to increase flux through the pathway is not to increase enzyme activity, substrate concentration, or coenzyme concentration alone but to increase all of these parameters in conjunction with each other.

Authors: Garth R Cronwright, Johann M Rohwer, Bernard A Prior

Date Published: 30th Aug 2002

Publication Type: Not specified

Abstract (Expand)

The involvement of nicotinamide adenine nucleotides (NAD(+), NADH) in the regulation of glycolysis in Lactococcus lactis was investigated by using (13)C and (31)P NMR to monitor in vivo the kinetics of the pools of NAD(+), NADH, ATP, inorganic phosphate (P(i)), glycolytic intermediates, and end products derived from a pulse of glucose. Nicotinic acid specifically labeled on carbon 5 was synthesized and used in the growth medium as a precursor of pyridine nucleotides to allow for in vivo detection of (13)C-labeled NAD(+) and NADH. The capacity of L. lactis MG1363 to regenerate NAD(+) was manipulated either by turning on NADH oxidase activity or by knocking out the gene encoding lactate dehydrogenase (LDH). An LDH(-) deficient strain was constructed by double crossover. Upon supply of glucose, NAD(+) was constant and maximal (approximately 5 mm) in the parent strain (MG1363) but decreased abruptly in the LDH(-) strain both under aerobic and anaerobic conditions. NADH in MG1363 was always below the detection limit as long as glucose was available. The rate of glucose consumption under anaerobic conditions was 7-fold lower in the LDH(-) strain and NADH reached high levels (2.5 mm), reflecting severe limitation in regenerating NAD(+). However, under aerobic conditions the glycolytic flux was nearly as high as in MG1363 despite the accumulation of NADH up to 1.5 mm. Glyceraldehyde-3-phosphate dehydrogenase was able to support a high flux even in the presence of NADH concentrations much higher than those of the parent strain. We interpret the data as showing that the glycolytic flux in wild type L. lactis is not primarily controlled at the level of glyceraldehyde-3-phosphate dehydrogenase by NADH. The ATP/ADP/P(i) content could play an important role.

Authors: Ana Rute Neves, Rita Ventura, Nahla Mansour, Claire Shearman, Michael J Gasson, Christopher Maycock, Ana Ramos, Helena Santos

Date Published: 13th May 2002

Publication Type: Not specified

Powered by
(v.1.16.0-pre)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH